

# Environmental Product Declaration

In accordance with ISO 14025 and EN 15804 +A2





The Norwegian EPD Foundation **Owner of the declaration**: REC Solar EMEA GmbH

**Program holder and publisher:** The Norwegian EPD foundation

Declaration number: NEPD-3422-2033-EN

Registration number: NEPD-3422-2033-EN

Issue date: 04.04.2022 Valid to: 04.04.2027 **N-Peak 2** Mono-crystalline photovoltaic module

Manufacturer: REC Solar Pte. Ltd.



## General information

## **Product:** N-Peak 2

## **Program Operator:**

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Tlf: +47 23 08 80 00 post@epd-norge.no e-mail:

**Declaration Number:** NEPD-3422-2033-EN

This declaration is based on Product **Category Rules:** NPCR 029 2020 Part B for PV modules 1.1

## Statements:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer, life cycle assessment data and evidences.

## **Declared unit:**

1m<sup>2</sup> of manufactured photovoltaic module

## **Functional unit:**

1 Wp of manufactured 375Wp photovoltaic module, from cradle-to-grave, with activities needed for a study period for a defined reference service life ( $\geq$ 80% of the labelled power output)

## Verification:

Independent verification of the declaration and data, according to ISO14025:2010

internal

external

X

Julie hydo Skillestad

Julie Lyslo Skullestad, Aase Teknikk AS Independent verifier approved by EPD Norway

## Owner of the declaration:

**REC Solar EMEA GmbH** Contact: Alexis Fabre +33786641732 Phone: e-mail: alexis.fabre@recgroup.com

## Manufacturer:

REC Solar Pte. Ltd. 20 Tuas South Ave. 14, Singapore 637312 Phone: +49 89 4 42 38 59-0 e-mail: recsolar.emea@recgroup.com

Place of production: Singapore

Management system: ISO 14001, ISO 9001, IEC 62941, OHSAS 18001:2007, ISO 45001

## Organisation no: HRB 180306

Issue date: 04.04.2022

Valid to: 04.04.2027

Year of study: 2022

## Comparability:

EPDs of construction products may not be comparable if they don't comply with EN15804 and are seen in a building context.

## The EPD has been worked out by:

Antonin d'Aviau de Ternay Kapstan



Approved (Manager of EPD Norway)



## Product

## **Product description:**

375Wp mono-crystalline solar photovoltaic module, designed to be installed on roofs or as standalone systems for local power production. Solar cells are assembled together with the backsheet, EVA, glass, frame and electrical connections to produce the finished solar module in the production factory in Singapore.

The solar cells used by REC are manufactured in the same way, but can have different efficiencies and they are sorted by power class. Modules are built from cells that come from the same power class. However, the output power can vary from a module to another due to small differencies between cells from one power. Modules are sorted by 5Wp power range. The module impacts in this EPD are not affected by different power as the manufacturing process is the same, but the results per Wp can vary. Extrapolation rules have been included in this EPD to convert the results to a different module power range.

## Product specification:

Sold as individual panels, with an effective surface area of 1.825m<sup>2</sup>. The packaging consists of LDPE, HDPE and a cardboard box, and the panels are delivered on a wooden pallet.

| Materials    | KG / FU  | %      |
|--------------|----------|--------|
| Cells        | 1.77E-03 | 2.72%  |
| Glass        | 3.88E-02 | 59.37% |
| Aluminium    | 7.54E-03 | 11.54% |
| POE          | 0.00E+00 | 0.00%  |
| EVA          | 5.19E-03 | 7.94%  |
| Copper       | 6.82E-04 | 1.04%  |
| Polymer      | 0.00E+00 | 0.00%  |
| PET          | 2.45E-03 | 3.75%  |
| PE           | 4.49E-04 | 0.69%  |
| Tin          | 3.41E-05 | 0.05%  |
| Junction box | 2.70E-03 | 4.14%  |
| Sealant      | 6.28E-04 | 0.96%  |
| Pallet       | 3.07E-03 | 4.70%  |
| Cardboard    | 4.61E-04 | 0.71%  |
| HDPE         | 1.39E-04 | 0.21%  |
| LDPE         | 1.42E-03 | 2.18%  |
| Label        | 1.31E-06 | 0.00%  |

## Technical data:

IEC 61215 / 61730, IEC 61701, IEC 61215, IEC 62782, IEC 62716, ISO 11925-2, IEC 62938, IEC 62804, AS 40404.2

Market: World

Reference service life, product: 25 years



## LCA: Calculation rules

## Declared unit:

1m<sup>2</sup> of manufactured photovoltaic module

## Data quality:

Specific data comes from actual consumption of the module assembly factory (July 2020 – June 2021). This data has been collected by the manufacturer and checked by the LCA practitioner. Generic data is from Ecoinvent v3.6 and SimaPro v9. Characterization factors from EN15804:2012 + A2: 2019. Generic data <10 years old.

## Allocation:

The allocation is made in accordance with the provisions of ISO 14025. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

## System boundary:

The cells and modules are manufactured in Singapore, the polysilicon comes from Malaysia and the ingots and wafers are produced in China. The flow chart for the lifecycle of REC Solar panels is shown below:



## Cut-off criteria:

All major raw materials and all essential energy is included. The production process for raw materials and energy flows with very small amounts (<1%) are not included. This cut-off rule does not apply for hazardous materials and substances.



## LCA: Scenarios and additional technical information

The following information describes the scenarios in the different modules of the EPD. All data is provided per functional unit.

## Transport from production place to assembly/user (A4)

The transport step A4 covers the transport from the factory in Singapore to the installation site in Europe by sea and road. The delivery port used for calculations in Europe is Rotterdam.

| Туре  | Capacity utilisation<br>(incl. return) % | Type of vehicle               | Distance<br>(km) | Value<br>(tkm) |
|-------|------------------------------------------|-------------------------------|------------------|----------------|
| Truck | 50%                                      | 16-32 metric ton lorry, EURO5 | 1 010            | 2.43E+01       |
| Boat  | 50%                                      | Container ship                | 18 000           | 4.33E+02       |

## Assembly (A5)

The modules are installed by hand. The screwdriver electricity consumption is neglected. As in PCR part A, the fasteners (screws) are not included in the LCA. The only impact is the packaging waste given in the table below:

| ltem            | Unit | Value    |
|-----------------|------|----------|
| Wooden pallet   | kg   | 1.15E+00 |
| Cardboard       | kg   | 1.73E-01 |
| HDPE            | kg   | 5.20E-02 |
| LDPE            | kg   | 5.33E-01 |
| Plastic         | kg   | 4.30E-02 |
| Packaging label | kg   | 4.90E-04 |

## Use (B1-B5)

The modules are considered as self-cleaning materials. No maintenance, repair, replacement or refurbishment is required during the module lifetime.

## Operational energy (B6) and water consumption (B7)

The modules are producing electricity from sunlight. The electricity production is calculated as below:

 $Energy_{year i} = I_{sun} \times PR \times Eff_{panel} \times S_{1kWp} \times D_{panel}$ 

Where:

- $I_{sun}$  is the sun irradiation received by the module in kWh. m<sup>-2</sup>.year<sup>-1</sup>, which depends on the site location.
- PR, or Performance Ratio, is the ratio between the energy produced by the panel and the final energy at the output of the photovoltaic system in order to take into account the various losses (cables, inverter, etc.).
- ${\sf Eff}_{{\sf panel}}$  , or panel efficiency, is the ratio between the energy produced and the solar radiation received.
- $S_{1kWp}$  is the surface area to get 1 kWp.



-  $D_{panel}$  corresponds to the degradation of the panel in year i. This degradation is 2% the first year and then 0.25% per year.  $D_{panel}=0.98 \times (1-0.25\%)^{i-1}$ 

Module production does not require water consumption.

## End of Life (C1, C3, C4)

The modules are considered as removed by hand. The recycling rates assumed for the LCA are:

- The laminate is shredded and recycled at 95%
- The frame is removed and recycled at 100%
- The cable and junction box are recycled at 100%

| Waste process                   | Unit | Value    |
|---------------------------------|------|----------|
| Recycling (sorted and shredded) | Kg   | 1.08E+01 |
| Solid waste, incinerated        | Kg   | 4.84E-01 |

## Transport to waste processing (C2)

It has been assumed that the modules are collected by truck.

| Туре  | Capacity utilisation<br>(incl. return) % | Type of vehicle               | Distance KM | Value<br>(tkm) |
|-------|------------------------------------------|-------------------------------|-------------|----------------|
| Truck | 50%                                      | 16-32 metric ton lorry, EURO5 | 1 000       | 2.22E+01       |

## Benefits and loads beyond the system boundaries (D)

Benefits and loads have been based on glass and aluminium frame recycling only.

| Item      | Unit | Value     |
|-----------|------|-----------|
| Glass     | Kg   | -7.51E+00 |
| Aluminium | Kg   | -3.98E-01 |



## LCA: Results

The LCA results show the environmental impacts and resource input and output flows calculated according to ISO 14025 and EN 15804 +A2. The results are shown per functional unit, which for this declaration is 1Wp, as well as per declared unit, which for this declaration is  $1 \text{ m}^2$ . The LCA results have been calculated using the LCA software SimaPro 9.

## System boundaries

| Pro           | duct st   | tage          | Asse<br>sta | embly<br>ige |     |             | U      | Use stage End of life stage beyond system<br>boundary |               | End of life stage         |                          |                               |           |                  |          |                                            |  |
|---------------|-----------|---------------|-------------|--------------|-----|-------------|--------|-------------------------------------------------------|---------------|---------------------------|--------------------------|-------------------------------|-----------|------------------|----------|--------------------------------------------|--|
| Raw materials | Transport | Manufacturing | Transport   | Assembly     | Use | Maintenance | Repair | Replacement                                           | Refurbishment | Operational<br>energy use | Operational water<br>use | De-construction<br>demolition | Transport | Waste processing | Disposal | Reuse-Recovery-<br>Recycling-<br>potential |  |
| A1            | A2        | A3            | A4          | A5           | B1  | B2          | B3     | B4                                                    | B5            | B6                        | B7                       | C1                            | C2        | C3               | C4       | D                                          |  |
| Х             | Х         | Х             | Х           | Х            | Х   | Х           | Х      | Х                                                     | Х             | Х                         | Х                        | Х                             | Х         | Х                | Х        | Х                                          |  |

(X=included, MND= module not declared, MNR=module not relevant)

## Classification of disclaimers to the declaration of core and additional environmental impact indicators

| ILCD<br>classification | Indicator                                                                                           | Disclaimer |  |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------|------------|--|--|--|--|
|                        | Global warming potential (GWP)                                                                      | None       |  |  |  |  |
| ILCD type / level      | Depletion potential of the stratospheric ozone layer (ODP)                                          | None       |  |  |  |  |
| 1                      | Potential incidence of disease due to PM emissions (PM)                                             | None       |  |  |  |  |
|                        | Acidification potential, Accumulated Exceedance (AP)                                                | None       |  |  |  |  |
|                        | Eutrophication potential, Fraction of nutrients reaching freshwater end compartment (EP-freshwater) | None       |  |  |  |  |
| ILCD type / level<br>2 | Eutrophication potential, Fraction of nutrients reaching marine end compartment (EP-marine)         | None       |  |  |  |  |
| Z                      | Eutrophication potential, Accumulated Exceedance (EP-terrestrial)                                   |            |  |  |  |  |
|                        | Formation potential of tropospheric ozone (POCP)                                                    | None       |  |  |  |  |
|                        | Potential Human exposure efficiency relative to U235 (IRP)                                          | 1          |  |  |  |  |
|                        | Abiotic depletion potential for non-fossil resources (ADP-minerals&metals)                          | 2          |  |  |  |  |
|                        | Abiotic depletion potential for fossil resources (ADP-fossil)                                       | 2          |  |  |  |  |
| ILCD type / level      | Water (user) deprivation potential, deprivation-weighted water consumption (WDP)                    | 2          |  |  |  |  |
| 3                      | Potential Comparative Toxic Unit for ecosystems (ETP-fw)                                            | 2          |  |  |  |  |
|                        | Potential Comparative Toxic Unit for humans (HTP-c)                                                 | 2          |  |  |  |  |
|                        | Potential Comparative Toxic Unit for humans (HTP-nc)                                                | 2          |  |  |  |  |
|                        | Potential Soil quality index (SQP)                                                                  | 2          |  |  |  |  |

**Disclaimer 1** – This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to

possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some

construction materials is also not measured by this indicator.

**Disclaimer 2** – The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator



## Results presented per functional unit

| a                  |                   |                       |
|--------------------|-------------------|-----------------------|
| Core environmental | impact indicators | (per functional unit) |
|                    |                   | (P                    |

| Indicator     | Unit         | EPD      | A1-A3    | A4       | A5       | B1-B7    | C1-C4    | D         |
|---------------|--------------|----------|----------|----------|----------|----------|----------|-----------|
| GWP-total     | kg CO2 eq.   | 1.36E+00 | 1.34E+00 | 3.96E-02 | 3.58E-03 | 0.00E+00 | 1.11E-02 | -3.74E-02 |
| GWP-fossil    | kg CO2 eq.   | 1.35E+00 | 1.33E+00 | 3.95E-02 | 3.58E-03 | 0.00E+00 | 1.11E-02 | -3.70E-02 |
| GWP-biogenic  | kg CO2 eq.   | 7.04E-03 | 7.30E-03 | 1.35E-05 | 8.26E-07 | 0.00E+00 | 5.63E-06 | -2.88E-04 |
| GWP-LULUC     | kg CO2 eq.   | 2.50E-03 | 2.62E-03 | 2.06E-05 | 3.44E-07 | 0.00E+00 | 3.05E-06 | -1.37E-04 |
| ODP           | kg CFC11 eq. | 1.35E-07 | 1.26E-07 | 8.45E-09 | 2.19E-10 | 0.00E+00 | 2.32E-09 | -1.94E-09 |
| AP            | mol H⁺ eq.   | 7.62E-03 | 7.09E-03 | 7.26E-04 | 5.15E-06 | 0.00E+00 | 4.23E-05 | -2.43E-04 |
| EP-freshwater | kg P eq.     | 8.00E-05 | 8.09E-05 | 2.36E-07 | 9.64E-09 | 0.00E+00 | 7.81E-08 | -1.24E-06 |
| EP-marine     | kg N eq.     | 1.44E-03 | 1.28E-03 | 1.82E-04 | 1.74E-06 | 0.00E+00 | 1.28E-05 | -3.74E-05 |
| EP-terrestial | mol N eq.    | 1.50E-02 | 1.33E-02 | 2.03E-03 | 1.88E-05 | 0.00E+00 | 1.41E-04 | -4.16E-04 |
| POCP          | kg NMVOC eq. | 5.12E-03 | 4.66E-03 | 5.38E-04 | 5.34E-06 | 0.00E+00 | 4.50E-05 | -1.22E-04 |
| ADP-M&M       | kg Sb eq.    | 1.21E-04 | 1.13E-04 | 6.80E-07 | 2.50E-08 | 0.00E+00 | 1.88E-07 | 7.78E-06  |
| ADP-fossil    | MJ           | 1.77E+01 | 1.73E+01 | 5.50E-01 | 1.48E-02 | 0.00E+00 | 1.54E-01 | -4.06E-01 |
| WDP           | m³           | 9.67E-01 | 9.68E-01 | 1.20E-03 | 3.93E-04 | 0.00E+00 | 6.97E-04 | -3.79E-03 |

**GWP-total:** Global Warming Potential; **GWP-fossil:** Global Warming Potential fossil fuels; **GWP-biogenic:** Global Warming Potential biogenic; **GWP-LULUC:** Global Warming Potential and use and land use change; **ODP:** Depletion potential of the stratospheric ozone layer; **AP:** Acidification potential, Accumulated Exceedance; **EP-freshwater:** Eutrophication potential, fraction of nutrients reaching freshwater end compartment; See "additional Norwegian requirements" for indicator given as PO4 eq. **EP-marine:** Eutrophication potential, fraction of nutrients reaching freshwater end compartment; **EP-terrestial:** Eutrophication potential, Accumulated Exceedance; **POCP:** Formation potential of tropospheric ozone; **ADP-M&M:** Abiotic depletion potential for non-fossil resources (minerals and metals); **ADP-fossil:** Abiotic depletion potential for fossil resources; **WDP:** Water deprivation potential, deprivation weighted water counsumption

## Additional environmental impact indicators (per functional unit)

| Indicator | Unit              | EPD      | A1-A3    | A4       | A5       | B1-B7    | C1-C4    | D         |
|-----------|-------------------|----------|----------|----------|----------|----------|----------|-----------|
| PM        | disease incidence | 6.06E-08 | 6.05E-08 | 1.98E-09 | 7.38E-11 | 0.00E+00 | 8.95E-10 | -2.90E-09 |
| IRP       | kBq U-235 eq      | 4.27E-02 | 4.02E-02 | 2.38E-03 | 6.16E-05 | 0.00E+00 | 6.78E-04 | -6.33E-04 |
| ETP-fw    | CTUe              | 3.49E+01 | 3.53E+01 | 4.01E-01 | 2.41E-02 | 0.00E+00 | 1.29E-01 | -9.45E-01 |
| HTP-c     | CTUh              | 8.01E-10 | 8.28E-10 | 1.79E-11 | 1.04E-12 | 0.00E+00 | 3.42E-12 | -4.94E-11 |
| HTP-nc    | CTUh              | 4.23E-08 | 4.25E-08 | 3.89E-10 | 3.99E-11 | 0.00E+00 | 1.52E-10 | -8.38E-10 |
| SQP       | Dimensionless     | 3.50E+01 | 3.46E+01 | 3.18E-01 | 1.47E-02 | 0.00E+00 | 2.73E-01 | -2.04E-01 |

**PM:** Particulate matter emissions; **IRP:** Ionising radiation, human health; **ETP-fw:** Ecotoxicity (freshwater); **ETP-c:** Human toxicity, cancer effects; **HTP-nc:** Human toxicity, non-cancer effects; **SQP:** Land use related impacts / soil quality

#### Indicator Unit EPD A1-A3 A4 B1-B7 C1-C4 RPEE MJ 3.27E+00 3.31E+00 5.89E-03 2.41E-04 8.20E-03 -4.92E-02 0.00E+00 RPEM 5.56E-02 5.56E-02 MJ 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TPE -4.92E-02 MJ 3.33E+00 3.36E+00 5.89E-03 2.41E-04 0.00E+00 8.20E-03 NRPE MJ 1.73E+01 1.69E+01 5.50E-01 1.48E-02 0.00E+00 1.54E-01 -4.06E-01 NRPM MJ 3.82E-01 3.82E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TRPE MJ 1.76E+01 1.73E+01 5.50E-01 1.48E-02 0.00E+00 1.54E-01 -4.06E-01 SM kg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF MJ 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF M.I 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 W m3 3.30E-02 3.30E-02 4.22E-05 7.39E-06 0.00E+00 6 60E-05 -1.51E-04

## Resource use (per functional unit)

**RPEE** Renewable primary energy resources used as energy carrier; **RPEM** Renewable primary energy resources used as raw materials; **TPE** Total use of renewable primary energy resources; **NRPE** Non renewable primary energy resources used as energy carrier; **NRPM** Non renewable primary energy resources used as materials; **TRPE** Total use of non renewable primary energy resources; **SM** Use of secondary materials; **RSF** Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; **W** Use of net fresh water



## End of life - Waste (per functional unit)

| Indicator | Unit | EPD      | A1-A3    | A4       | A5       | B1-B7    | C1-C4    | D         |
|-----------|------|----------|----------|----------|----------|----------|----------|-----------|
| HW        | kg   | 1.03E-01 | 1.07E-01 | 3.95E-04 | 1.40E-03 | 0.00E+00 | 7.21E-04 | -5.99E-03 |
| NHW       | kg   | 8.56E-01 | 8.50E-01 | 1.70E-02 | 7.54E-04 | 0.00E+00 | 1.41E-02 | -2.52E-02 |
| RW        | kg   | 3.83E-05 | 3.41E-05 | 3.79E-06 | 9.52E-08 | 0.00E+00 | 1.05E-06 | -7.13E-07 |

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

#### End of life – output flow (per functional unit)

| -                                    |      |          |          |          |          |          |          |          |
|--------------------------------------|------|----------|----------|----------|----------|----------|----------|----------|
| Indicator                            | Unit | EPD      | A1-A3    | A4       | A5       | B1-B7    | C1-C4    | D        |
| CR                                   | kg   | 0.00E+00 |
| MR                                   | kg   | 5.39E-02 | 1.34E-03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 5.26E-02 | 0.00E+00 |
| MER                                  | kg   | 0.00E+00 |
| EEE                                  | MJ   | 0.00E+00 |
| ETE                                  | MJ   | 0.00E+00 |
| Exported energy - gas<br>and process | MJ   | 0.00E+00 |

**CR** Components for reuse; **MR** Materials for recycling; **MER** Materials for energy recovery; **EEE** Exported electric energy; **ETE** Exported thermal energy

## Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009

#### Information describing the biogenic carbon content at the factory gate (per functional unit)

| Biogenic carbon content                                     | Unit | Value    |
|-------------------------------------------------------------|------|----------|
| Biogenic carbon content in product                          | kg C | 0.00E+00 |
| Biogenic carbon content<br>in the accompanying<br>packaging | kg C | 1.54E-03 |

## Results presented per declared unit

#### Core environmental impact indicators (per declared unit)

| Indicator     | Unit         | EPD      | A1-A3    | A4       | A5       | B1-B7    | C1-C4    | D         |
|---------------|--------------|----------|----------|----------|----------|----------|----------|-----------|
| GWP-total     | kg CO2 eq.   | 2.80E+02 | 2.76E+02 | 8.13E+00 | 7.35E-01 | 0.00E+00 | 2.28E+00 | -7.68E+00 |
| GWP-fossil    | kg CO2 eq.   | 2.78E+02 | 2.74E+02 | 8.12E+00 | 7.35E-01 | 0.00E+00 | 2.28E+00 | -7.59E+00 |
| GWP-biogenic  | kg CO2 eq.   | 1.45E+00 | 1.50E+00 | 2.77E-03 | 1.70E-04 | 0.00E+00 | 1.16E-03 | -5.91E-02 |
| GWP-LULUC     | kg CO2 eq.   | 5.15E-01 | 5.38E-01 | 4.23E-03 | 7.07E-05 | 0.00E+00 | 6.26E-04 | -2.81E-02 |
| ODP           | kg CFC11 eq. | 2.78E-05 | 2.59E-05 | 1.74E-06 | 4.50E-08 | 0.00E+00 | 4.76E-07 | -3.99E-07 |
| AP            | mol H⁺ eq.   | 1.57E+00 | 1.46E+00 | 1.49E-01 | 1.06E-03 | 0.00E+00 | 8.69E-03 | -5.00E-02 |
| EP-freshwater | kg P eq.     | 1.64E-02 | 1.66E-02 | 4.85E-05 | 1.98E-06 | 0.00E+00 | 1.60E-05 | -2.55E-04 |
| EP-marine     | kg N eq.     | 2.95E-01 | 2.62E-01 | 3.75E-02 | 3.58E-04 | 0.00E+00 | 2.62E-03 | -7.69E-03 |
| EP-terrestial | mol N eq.    | 3.09E+00 | 2.73E+00 | 4.16E-01 | 3.86E-03 | 0.00E+00 | 2.90E-02 | -8.54E-02 |
| POCP          | kg NMVOC eq. | 1.05E+00 | 9.57E-01 | 1.10E-01 | 1.10E-03 | 0.00E+00 | 9.25E-03 | -2.51E-02 |
| ADP-M&M       | kg Sb eq.    | 2.49E-02 | 2.32E-02 | 1.40E-04 | 5.14E-06 | 0.00E+00 | 3.86E-05 | 1.60E-03  |
| ADP-fossil    | MJ           | 3.63E+03 | 3.56E+03 | 1.13E+02 | 3.04E+00 | 0.00E+00 | 3.16E+01 | -8.34E+01 |
| WDP           | m³           | 1.99E+02 | 1.99E+02 | 2.46E-01 | 8.07E-02 | 0.00E+00 | 1.43E-01 | -7.78E-01 |

**GWP-total:** Global Warming Potential; **GWP-fossil:** Global Warming Potential fossil fuels; **GWP-biogenic:** Global Warming Potential biogenic; **GWP-LULUC:** Global Warming Potential land use and land use change; **ODP:** Depletion potential of the stratospheric ozone layer; **AP:** Acidification potential, Accumulated Exceedance; **EP-freshwater:** Eutrophication potential, fraction of nutrients reaching freshwater end compartment; See "additional Norwegian requirements" for indicator given as PO4 eq. **EP-marine:** Eutrophication potential, fraction of nutrients reaching freshwater end compartment; **EP-terrestial:** Eutrophication potential, Accumulated Exceedance; **POCP:** Formation potential of tropospheric ozone; **ADP-M&M:** Abiotic depletion potential for non-fossil resources (minerals and metals); **ADP-fossil:** Abiotic depletion potential for fossil resources; **WDP:** Water deprivation potential, deprivation weighted water counsumption



## Additional environmental impact indicators (per declared unit)

| Indicator | Unit              | EPD      | A1-A3    | A4       | A5       | B1-B7    | C1-C4    | D         |
|-----------|-------------------|----------|----------|----------|----------|----------|----------|-----------|
| PM        | disease incidence | 1.24E-05 | 1.24E-05 | 4.06E-07 | 1.52E-08 | 0.00E+00 | 1.84E-07 | -5.95E-07 |
| IRP       | kBq U-235 eq      | 8.77E+00 | 8.25E+00 | 4.90E-01 | 1.27E-02 | 0.00E+00 | 1.39E-01 | -1.30E-01 |
| ETP-fw    | CTUe              | 7.18E+03 | 7.26E+03 | 8.24E+01 | 4.95E+00 | 0.00E+00 | 2.65E+01 | -1.94E+02 |
| HTP-c     | CTUh              | 1.65E-07 | 1.70E-07 | 3.68E-09 | 2.14E-10 | 0.00E+00 | 7.02E-10 | -1.01E-08 |
| HTP-nc    | CTUh              | 8.68E-06 | 8.74E-06 | 8.00E-08 | 8.21E-09 | 0.00E+00 | 3.13E-08 | -1.72E-07 |
| SQP       | Dimensionless     | 7.19E+03 | 7.11E+03 | 6.53E+01 | 3.02E+00 | 0.00E+00 | 5.61E+01 | -4.19E+01 |

**PM:** Particulate matter emissions; **IRP:** Ionising radiation, human health; **ETP-fw:** Ecotoxicity (freshwater); **ETP-c:** Human toxicity, cancer effects; **HTP-nc:** Human toxicity, non-cancer effects; **SQP:** Land use related impacts / soil quality

#### Resource use (per declared unit)

| Indicator | Unit | EPD      | A1-A3    | A4       | A5       | B1-B7    | C1-C4    | D         |
|-----------|------|----------|----------|----------|----------|----------|----------|-----------|
| RPEE      | MJ   | 6.73E+02 | 6.80E+02 | 1.21E+00 | 4.95E-02 | 0.00E+00 | 1.68E+00 | -1.01E+01 |
| RPEM      | MJ   | 1.14E+01 | 1.14E+01 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00  |
| TPE       | MJ   | 6.84E+02 | 6.91E+02 | 1.21E+00 | 4.95E-02 | 0.00E+00 | 1.68E+00 | -1.01E+01 |
| NRPE      | MJ   | 3.55E+03 | 3.48E+03 | 1.13E+02 | 3.04E+00 | 0.00E+00 | 3.16E+01 | -8.35E+01 |
| NRPM      | MJ   | 7.85E+01 | 7.85E+01 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00  |
| TRPE      | MJ   | 3.62E+03 | 3.56E+03 | 1.13E+02 | 3.04E+00 | 0.00E+00 | 3.16E+01 | -8.34E+01 |
| SM        | kg   | 0.00E+00  |
| RSF       | MJ   | 0.00E+00  |
| NRSF      | MJ   | 0.00E+00  |
| W         | m3   | 6.77E+00 | 6.78E+00 | 8.67E-03 | 1.52E-03 | 0.00E+00 | 1.36E-02 | -3.11E-02 |

**RPEE** Renewable primary energy resources used as energy carrier; **RPEM** Renewable primary energy resources used as raw materials; **TPE** Total use of renewable primary energy resources; **NRPE** Non renewable primary energy resources used as energy carrier; **NRPM** Non renewable primary energy resources used as materials; **TRPE** Total use of non renewable primary energy resources; **SM** Use of secondary materials; **RSF** Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; **W** Use of net fresh water

#### End of life - Waste (per declared unit)

| Indicator | Unit | EPD      | A1-A3    | A4       | A5       | B1-B7    | C1-C4    | D         |
|-----------|------|----------|----------|----------|----------|----------|----------|-----------|
| HW        | kg   | 2.12E+01 | 2.20E+01 | 8.11E-02 | 2.87E-01 | 0.00E+00 | 1.48E-01 | -1.23E+00 |
| NHW       | kg   | 1.76E+02 | 1.75E+02 | 3.50E+00 | 1.55E-01 | 0.00E+00 | 2.89E+00 | -5.17E+00 |
| RW        | kg   | 7.87E-03 | 7.00E-03 | 7.78E-04 | 1.95E-05 | 0.00E+00 | 2.15E-04 | -1.47E-04 |

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

#### End of life – output flow (per declared unit)

|                                      | The characteristic state of the |          | · · · )  |          |          |          |          |          |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| Indicator                            | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPD      | A1-A3    | A4       | A5       | B1-B7    | C1-C4    | D        |
| CR                                   | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00E+00 |
| MR                                   | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.11E+01 | 2.75E-01 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.08E+01 | 0.00E+00 |
| MER                                  | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00E+00 |
| EEE                                  | MJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00E+00 |
| ETE                                  | MJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00E+00 |
| Exported energy - gas<br>and process | MJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00E+00 |

**CR** Components for reuse; **MR** Materials for recycling; **MER** Materials for energy recovery; **EEE** Exported electric energy; **ETE** Exported thermal energy

## Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009

#### Information describing the biogenic carbon content at the factory gate (per declared unit)

| Biogenic carbon content            | Unit | Value    |
|------------------------------------|------|----------|
| Biogenic carbon content in product | kg C | 0.00E+00 |
| Biogenic carbon content            |      |          |
| in the accompanying                | kg C | 3.15E-01 |
| packaging                          |      |          |



## Additional Norwegian requirements

## Greenhouse gas emission from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

| National electricity grid | Unit           | Value |
|---------------------------|----------------|-------|
| Singapore: Ecoinvent v3.6 | kg CO2 -eq/kWh | 0.464 |
| China: Ecoinvent v3.6     | kg CO2 -eq/kWh | 1.061 |
| Malaysia: Ecoinvent v3.6  | kg CO2 -eq/kWh | 0.851 |

# Additional environmental impact indicators required in NPCR Part A for construction products

In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator for GWP has been sub-divided into the following:

- GWP-IOBC Climate impacts calculated according to the principle of instantanious oxidation
- GWP-BC Climate impacts from the net uptake and emission of biogenic carbon from each module.

## Additional environmental impact indicators required in NPCR Part A (per functional unit)

| Indicator      | Unit (per FU) | EPD      | A1-A3    | A4       | A5       | B1-B7    | C1-C4    | D         |
|----------------|---------------|----------|----------|----------|----------|----------|----------|-----------|
| EP-freshwater* | kg PO4 eq.    | 8.16E-04 | 7.61E-04 | 6.56E-05 | 8.26E-07 | 0.00E+00 | 5.45E-06 | -1.64E-05 |
| GWP-IOBC       | kg CO2 eq.    | 1.35E+00 | 1.33E+00 | 3.95E-02 | 3.58E-03 | 0.00E+00 | 1.11E-02 | -3.70E-02 |
| GWP-BC         | kg CO2 eq.    | 5.63E-03 | 5.63E-03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00  |
| GWP            | kg CO2 eq.    | 1.36E+00 | 1.34E+00 | 3.95E-02 | 3.58E-03 | 0.00E+00 | 1.11E-02 | -3.70E-02 |

## Additional environmental impact indicators required in NPCR Part A (per declared unit)

| Indicator      | Unit (per DU) | EPD      | A1-A3    | A4       | A5       | B1-B7    | C1-C4    | D         |
|----------------|---------------|----------|----------|----------|----------|----------|----------|-----------|
| EP-freshwater* | kg PO4 eq.    | 1.68E-01 | 1.56E-01 | 1.35E-02 | 1.70E-04 | 0.00E+00 | 1.12E-03 | -3.37E-03 |
| GWP-IOBC       | kg CO2 eq.    | 2.78E+02 | 2.74E+02 | 8.12E+00 | 7.35E-01 | 0.00E+00 | 2.28E+00 | -7.59E+00 |
| GWP-BC         | kg CO2 eq.    | 1.16E+00 | 1.16E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00  |
| GWP            | kg CO2 eq.    | 2.79E+02 | 2.75E+02 | 8.12E+00 | 7.35E-01 | 0.00E+00 | 2.28E+00 | -7.59E+00 |

**EP-freshwater**\* Eutrophication potential, fraction of nutrients reaching freshwater end compartment. Declared as PO4 eq. **GWP-IOBC** Global warming potential calculated according to the principle of instantanious oxidation. **GWP-BC** Global warming potential from net uptake and emissions of biogenic carbon from the materials in each module. **GWP** Global warming potential.



## Hazardous substances

The declaration is based upon reference to threshold values and/or test results and/or material safety data sheets provided to EPD verifiers. Documentation available upon request to EPD owner.

 $\boxtimes$  The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

## Indoor environment

No tests have been carried out on the product concerning indoor climate.

## Carbon footprint

The product stage (A1-A3) carbon footprint is 1.34E-00 kgCO2-eq / Wp and 2.76E+02 kgCO2-eq /  $m^2.$ 



## **Extrapolation rules**

## Power peak

The environmental impacts are given for a specific module power peak. For example,  $Wp_{EPD} = 375Wp$  for NP2 modules. For a different Wp (for example  $Wp_{project} = 360Wp$ ), the impacts can be re-calculated by applying to each impact the following ratio:  $Wp_{project} / Wp_{EPD} = 375 Wp / 360 Wp$ .

Indeed, the 375 Wp and 360 Wp modules have the same impact per module (Impact<sub>module</sub>).

Therefore:

$$Impacts_{project\,(per\,kWp)} = \frac{impact_{module}}{360} = \frac{Impact_{module}}{375} \times \frac{375}{360} = Impacts_{EPD\,(per\,kWp)} \times \frac{375}{360}$$

This extrapolation rule is usable for all impacts except "Exported energy -electricity". Indeed, the amount of produced electricity remains the same per kWp irregardless of the Wp of module. For a different Wp, it requires a different surface to get 1kWp. Therefore, it changes the exported energy per  $m^2$  but not the kWp.



## Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines

EN 15804:2012 + A2:2019 Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products

ISO 21930:2007 Sustainability in building construction - Environmental declaration of building products

PCR NPCR 029 version 1.1 PCR – Part B for photovoltaic modules used in the building and construction industry, including production of cell, wafer, ingot block, solar grade silicon, solar substrates, solar superstrates and other solar grade semiconductor materials

LCAs report Mono ingot, recycled silicon and brick production in China Mono wafers production in China

EPD report REC Solar solar grade silicon (SoG-Si) - NEPD-2681-1371-EN

|                              | Program Operator                    | tlf     | +47 23 08 80 00             |
|------------------------------|-------------------------------------|---------|-----------------------------|
| C epd-norae                  | The Norwegian EPD Foundation        |         |                             |
| The Norwegian EPD Foundation | Post Box 5250 Majorstuen, 0303 Oslo | e-post: | post@epd-norge.no           |
|                              | Norway                              | web     | www.epd-norge.no            |
|                              | Publisher                           | tlf     | +47 23 08 80 00             |
| C epd-norae                  | The Norwegian EPD Foundation        |         |                             |
| The Norwegian EPD Foundation | Post Box 5250 Majorstuen, 0303 Oslo | e-post: | post@epd-norge.no           |
|                              | Norway                              | web     | www.epd-norge.no            |
|                              | Owner of the decleration            | tlf     | +49 89 4 42 38 59-0         |
|                              | REC Solar EMEA GmbH                 | Fax     | +49 89 4 42 38 59-99        |
|                              | Balanstr. 71a, 81541 Munich         | e-post: | recsolar.emea@recgroup.com  |
|                              | Germany                             | web     | https://www.recgroup.com/en |
|                              | Author of the life cycle assesment  | tlf     | +33 6 33 59 30 24           |
| Vanctan                      | Kapstan                             |         |                             |
| Aupstan                      | 28 rue Bellicard, 69003 Lyon        | e-post: | antonin.daviau@kapstan.fr   |
|                              | France                              | web     | www.kapstan.fr              |

# EPD for the best environmental decision





The Norwegian EPD foundation www.epd-norge.no